Convex function
A function
is convex iff for any
:
(see Jensenβs inequality)
convexity in one dimension
A twice-differentiable function
is:
- convex if and only if
for all
.
- Ξ²-smooth if
.
- Ξ±-strongly convex if
.
A function
is convex if and only if for any
:
$$f(\mathbf{x}+\mathbf{z}) \geq f(\mathbf{x})
+ \nabla f(\mathbf{x})^\mathsf{T} \sf{z}$$ equivalently,
See also: Convex set
References:
- https://www.cs.cornell.edu/courses/cs6783/2018fa/lec16-supplement.pdf