Convex function

A function ff is convex iff for any 𝐱,𝐲,λ∈[0,1]\mathbf{x},\mathbf{y},\lambda \in [0,1]: (1βˆ’Ξ»)β‹…f(𝐱)+Ξ»β‹…f(𝐲)β‰₯f((1βˆ’Ξ»)⋅𝐱+λ⋅𝐲)(1-\lambda) \cdot f(\mathbf{x})+\lambda \cdot f(\mathbf{y}) \geq f((1-\lambda) \cdot \mathbf{x} + \lambda \cdot \mathbf{y})

(see Jensen’s inequality)


convexity in one dimension

A twice-differentiable function f:ℝ→Rf : \mathbb{R} β†’ R is:


A function ff is convex if and only if for any 𝐱,𝐲\mathbf{x},\mathbf{y}: $$f(\mathbf{x}+\mathbf{z}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^\mathsf{T} \sf{z}$$ equivalently, f(𝐱)βˆ’f(𝐲)β‰€βˆ‡f(𝐱)𝖳(π±βˆ’π²)f(\mathbf{x}) - f(\mathbf{y}) \leq \nabla f(\mathbf{x})^\mathsf{T} (\mathbf{x}-\mathbf{y})


See also: Convex set

References:

  1. https://www.cs.cornell.edu/courses/cs6783/2018fa/lec16-supplement.pdf